網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號
前面我們已經(jīng)分析過,考研數(shù)學(xué)線性代數(shù)這門學(xué)科整體的特點是知識點之間的綜合性比較強,有些概念較為抽象,這也是大部分考生認為考研數(shù)學(xué)線性代數(shù)不好學(xué),根本找不到復(fù)習(xí)的頭緒,做題時也是一頭霧水,不知道怎么分析考慮。
這里,老師要求大家在學(xué)習(xí)過程中一定要注意知識間之間的關(guān)聯(lián)性,理解概率的實質(zhì)。如:矩陣的秩與向量組的秩之間的關(guān)聯(lián),矩陣等價與向量組等價的區(qū)別,矩陣等價、相似、合同三者之間的區(qū)別與聯(lián)系、矩陣相似對角化與實對稱矩陣正交變換對角化二者之間的區(qū)別與聯(lián)系等等。若是同學(xué)們對于上面的問題根本分不清楚,則說明大家對于基本概念、基本方法還沒有完全理解透徹。不過,大家也不要太焦急,希望同學(xué)們在后期的復(fù)習(xí)過程中對于基本概念、基本方法要多加理解和體會,學(xué)習(xí)一定要有心得。
下面我們分析一下后面三部分的內(nèi)容,線性方程組、特征值與特征向量、二次型的命題特點。
線性方程組,會求兩類方程組的解。線性方程組是線性代數(shù)這么學(xué)科的核心和樞紐,很多問題的解決都離不開解方程組。因而線性方程組解的問題是每年必考的知識點。對于齊次線性方程組,我們需要掌握基礎(chǔ)解系的概念,以及如何求一個方程組的基礎(chǔ)解系。清楚明了基礎(chǔ)解系所含線性無關(guān)解向量的個數(shù)和系數(shù)矩陣的秩之間的關(guān)系。會判斷非齊次線性方程組的解的情況,掌握其求解的方法。此外,考生還需要掌握非齊次線性方程組與其對應(yīng)的齊次線性方程組的解結(jié)構(gòu)之間的關(guān)系。
特征值與特征向量,掌握矩陣對角化的方法。這一部分是理論性較強的,理解特征值與特征向量的定義及性質(zhì),矩陣相似的定義,矩陣對角化的定義。同學(xué)們還需掌握求矩陣特征值與特征向量的基本方法。會判斷一個矩陣是否可以對角化,若可以的話,需要把相應(yīng)的可逆矩陣P求出來。還需要注意矩陣及其關(guān)聯(lián)矩陣(轉(zhuǎn)置、逆、伴隨、相似)的特征值與特征向量的關(guān)系。反問題也是喜歡考查的一類題型,已知矩陣的特征值與特征向量,反求矩陣A。
二次型,理解二次型標準化的過程,掌握實對稱矩陣的對角化。二次型幾乎是每年必考的一道大題,一般考查的是采用正交變換法將二次型標準化。掌握二次型的標準形與規(guī)范型之間的區(qū)別與聯(lián)系。會判斷二次型是否正定的一般方法。討論矩陣等價、相似、合同的關(guān)系。
雖然線性代數(shù)在考研數(shù)學(xué)考試試卷中僅有5題,占有34分的分值,但是這34分也不是很輕松就能拿下的。同學(xué)們在復(fù)習(xí)過程中需要對于基礎(chǔ)知識點理解透徹,做考研數(shù)學(xué)題過程中多分析總結(jié)。
來源未注明“中國考研網(wǎng)”的資訊、文章等均為轉(zhuǎn)載,本網(wǎng)站轉(zhuǎn)載出于傳遞更多信息之目的,并不意味著贊同其觀點或證實其內(nèi)容的真實性,如涉及版權(quán)問題,請聯(lián)系本站管理員予以更改或刪除。如其他媒體、網(wǎng)站或個人從本網(wǎng)站下載使用,必須保留本網(wǎng)站注明的"稿件來源",并自負版權(quán)等法律責(zé)任。
來源注明“中國考研網(wǎng)”的文章,若需轉(zhuǎn)載請聯(lián)系管理員獲得相應(yīng)許可。
聯(lián)系方式:chinakaoyankefu@163.com
掃碼關(guān)注
了解考研最新消息
網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號