網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號(hào)
考研復(fù)習(xí)的強(qiáng)化階段即將開(kāi)始,如果考生想在考研數(shù)學(xué)中取得好成績(jī),就一定要把握好暑假這個(gè)黃金時(shí)間段。通過(guò)暑假的這段時(shí)間復(fù)習(xí),大家應(yīng)該做到把所學(xué)的知識(shí)系統(tǒng)化綜合化,尤其是考研數(shù)學(xué)中的線性代數(shù)。在考研數(shù)學(xué)中線性代數(shù)只占分值的22%,所占比例雖然不高,但是對(duì)每位考研學(xué)子來(lái)說(shuō)同樣重要。線性代數(shù)部分的內(nèi)容相對(duì)容易,從歷年真題分析可知考試的時(shí)候出題的套路也比較固定。但是線性代數(shù)的知識(shí)點(diǎn)比較瑣碎,記憶量大而且容易混淆的地方較多;另外這門(mén)學(xué)科的知識(shí)點(diǎn)之間的聯(lián)系性也比較強(qiáng),這種聯(lián)系不僅指各個(gè)章節(jié)之間的相互聯(lián)系,更重要的是不同章節(jié)中的各種性質(zhì)、定理、判定法則之間也有著相互推導(dǎo)和前后印證的關(guān)系。因此,在復(fù)習(xí)線性代數(shù)的時(shí)候,要求考生做到“融會(huì)貫通”,即不僅要找到不同知識(shí)點(diǎn)之間的內(nèi)在聯(lián)系,還要掌握不同知識(shí)點(diǎn)之間的順承關(guān)系。為了使廣大考生在暑期強(qiáng)化階段更好地復(fù)習(xí)線性代數(shù)這門(mén)學(xué)科,數(shù)學(xué)教研室李老師為大家總結(jié)了本門(mén)課程的核心考點(diǎn),希望對(duì)大家的復(fù)習(xí)能有所幫助!
1、行列式
本章的核心考點(diǎn)是行列式的計(jì)算,包括數(shù)值型行列式的計(jì)算和抽象型行列式的計(jì)算,其中數(shù)值型行列式的計(jì)算又分為低階行列式和高階行列式兩種類(lèi)型。對(duì)于低階的數(shù)值型行列式來(lái)說(shuō),主要的處理方法是:找1,化0,展開(kāi),即首先找行列式中最簡(jiǎn)單的元素,利用行列式的性質(zhì)將最簡(jiǎn)單元素所在的行或者列的其他元素均化為0,然后再利用行列式的展開(kāi)定理對(duì)目標(biāo)行列式進(jìn)行降階,最后利用已知公式求得目標(biāo)行列式的值。對(duì)于高階的數(shù)值型行列式來(lái)說(shuō),它的處理方法有兩種:一是三角化;二是展開(kāi)。所謂的三角化就是利用行列式的性質(zhì)將目標(biāo)行列式化成上三角行列式或者下三角行列式,三角化的主要思想就是化零,即利用行列式中各元素之間的關(guān)系通過(guò)行列式的性質(zhì)化出較多的零,它是解決“爪型”行列式和“對(duì)角線型”行列式的主要方法。而所謂的展開(kāi)就是利用行列式的展開(kāi)定理對(duì)目標(biāo)行列式進(jìn)行降階,一般解決的是遞推形式的行列式,而它的關(guān)鍵點(diǎn)則是找出與的結(jié)構(gòu)。對(duì)于數(shù)值型行列式來(lái)說(shuō),考試直接考查的題目相對(duì)較少,它總是伴隨著線性方程組或者特征值與特征向量等的相關(guān)知識(shí)出題的。對(duì)行列式的考查多以抽象型行列式的形式出現(xiàn),這一部分的考題綜合性很強(qiáng),與后續(xù)章節(jié)的聯(lián)系比較緊密,除了要用到行列式常見(jiàn)的性質(zhì)以外,更需要結(jié)合矩陣的運(yùn)算,綜合特征值特征向量等相關(guān)考點(diǎn),對(duì)考生能力要求較高,需要考生有扎實(shí)的基礎(chǔ),對(duì)線性代數(shù)整個(gè)學(xué)科進(jìn)行過(guò)細(xì)致而全面的復(fù)習(xí)。抽象行列式的計(jì)算常見(jiàn)的方法有三種:一是利用行列式的性質(zhì);二是使用矩陣運(yùn)算;三是結(jié)合特征值與特征向量。
2、矩陣
矩陣是線性代數(shù)的核心內(nèi)容,它是后續(xù)章節(jié)知識(shí)的基礎(chǔ),矩陣的概念、運(yùn)算及其相關(guān)理論貫穿著整個(gè)線性代數(shù)這門(mén)學(xué)科。這部分的考點(diǎn)較多,重點(diǎn)是矩陣的運(yùn)算,尤其是逆矩陣、矩陣的初等變換和矩陣的秩是重中之重的核心考點(diǎn)?荚囶}目中經(jīng)常涉及到伴隨矩陣的定義、性質(zhì)、行列式、可逆陣的逆矩陣、矩陣的秩及包含伴隨矩陣的矩陣方程等。另外,這幾年還經(jīng)常出現(xiàn)與初等變換與初等矩陣相關(guān)的命題。本章常見(jiàn)題型有:計(jì)算方陣的冪、與伴隨矩陣相關(guān)的命題、與初等變換相關(guān)的命題、有關(guān)逆矩陣的計(jì)算與證明、解矩陣方程等。
3、向量
本章的核心考點(diǎn)是向量組的線性相關(guān)性的判斷,它也是線性代數(shù)的重點(diǎn),同時(shí)也是考研的重點(diǎn)。2014年的考生一定要吃透向量組線性相關(guān)性的概念,熟練掌握有關(guān)性質(zhì)及判定法并能靈活應(yīng)用,在做此處題目的時(shí)候要學(xué)會(huì)與線性表出、向量組的秩及線性方程組等相關(guān)知識(shí)聯(lián)系,從各個(gè)方面加強(qiáng)對(duì)向量組線性相關(guān)性的理解。此章常見(jiàn)的考試題型有:判定向量組的線性相關(guān)性、向量組線性相關(guān)性的證明、判定一個(gè)向量能否由一向量組線性表出、向量組的秩和極大無(wú)關(guān)組的求法、有關(guān)秩的證明、有關(guān)矩陣與向量組等價(jià)的命題、與向量空間有關(guān)的命題(數(shù)一要求)。
4、線性方程組
考研數(shù)學(xué)重點(diǎn)考查的章節(jié),從歷年真題來(lái)看,方程組出題的頻率較高,幾乎每年都有考題。本章的核心考點(diǎn)有:解的判定與解的結(jié)構(gòu)、齊次線性方程組基礎(chǔ)解系的求解與證明、齊次(非齊次)線性方程組的求解(含對(duì)參數(shù)取值的討論)。主要的題型有:線性方程組的求解、方程組解向量的判別及解的性質(zhì)、齊次線性方程組的基礎(chǔ)解系、非齊次線性方程組的通解結(jié)構(gòu)、兩個(gè)方程組的公共解、同解問(wèn)題等。本章節(jié)常與向量章節(jié)聯(lián)系在一起出題,二者屬于同一問(wèn)題的不同描述,在考題中經(jīng)常是交替出現(xiàn)的。
5、特征值與特征向量
考研數(shù)學(xué)重點(diǎn)考查的章節(jié),線性代數(shù)的核心內(nèi)容,題多分值大,共有三部分重點(diǎn)內(nèi)容:特征值和特征向量的概念及計(jì)算、方陣的相似對(duì)角化、實(shí)對(duì)稱(chēng)矩陣的正交相似對(duì)角化。核心題型有:數(shù)值型矩陣的特征值和特征向量的計(jì)算、抽象型矩陣特征值和特征向量的求法、判定矩陣的相似對(duì)角化、由特征值或特征向量反求矩陣A、有關(guān)實(shí)對(duì)稱(chēng)矩陣的問(wèn)題。本章節(jié)與二次型聯(lián)系也很緊密。
6、二次型
這部分需要掌握兩點(diǎn):一是用正交變換法和配方法化二次型為標(biāo)準(zhǔn)形,核心是正交變換法。但是需要注意的是對(duì)于出現(xiàn)多重特征值時(shí),解方程組所得的對(duì)應(yīng)的特征向量不一定是正交的,這時(shí)需要對(duì)所得到的向量組進(jìn)行施密特正交化,然后再規(guī)范化。二是二次型正定性的判斷,核心考點(diǎn)是二次型正定性的判定方法。
來(lái)源未注明“中國(guó)考研網(wǎng)”的資訊、文章等均為轉(zhuǎn)載,本網(wǎng)站轉(zhuǎn)載出于傳遞更多信息之目的,并不意味著贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性,如涉及版權(quán)問(wèn)題,請(qǐng)聯(lián)系本站管理員予以更改或刪除。如其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)站下載使用,必須保留本網(wǎng)站注明的"稿件來(lái)源",并自負(fù)版權(quán)等法律責(zé)任。
來(lái)源注明“中國(guó)考研網(wǎng)”的文章,若需轉(zhuǎn)載請(qǐng)聯(lián)系管理員獲得相應(yīng)許可。
聯(lián)系方式:chinakaoyankefu@163.com
掃碼關(guān)注
了解考研最新消息
網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號(hào)