網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號
北京化工大學(xué)高分子化學(xué)與物理專業(yè)研究生導(dǎo)師劉軍介紹如下:
姓名: 劉軍 | 性 別: 男 | 院 系: 材料科學(xué)與工程學(xué)院 | |||||||||||||||
行政職務(wù): | 專業(yè)技術(shù)職稱: 副教授 | 導(dǎo)師類別: 碩士生導(dǎo)師 | |||||||||||||||
從事專業(yè)1: 材料科學(xué)與工程 | 從事專業(yè)2: 高分子化學(xué)與物理 | 從事專業(yè)3: 材料加工工程 | |||||||||||||||
從事專業(yè)4: 化學(xué) | |||||||||||||||||
最后學(xué)歷: 博士研究生 | 最后學(xué)位: 博士 | 任碩導(dǎo)年月: 2013-09 | |||||||||||||||
任博導(dǎo)年月: | 是否院士: 否 | 是否國務(wù)院學(xué)科評議組成員: 否 | |||||||||||||||
畢業(yè)院校: 北京化工大學(xué) | 畢業(yè)專業(yè): 070305 高分子化學(xué)與物理 | 畢業(yè)時間: 2011-07-01 | |||||||||||||||
辦公電話: 64455618 | E-mail: liujun@mail.buct.edu.cn | 是否停招: 否 | |||||||||||||||
◇ 個人簡歷: | |||||||||||||||||
劉 軍
北京化工大學(xué)有機-無機復(fù)合材料國家重點實驗室 Tel: 010-64455618 E-mail: liujun@mail.buct.edu.cn or lj200321039@163.com; Homepage: http://www.caem.buct.edu.cn/szll/jsjl/34903.htm
一. 教育與工作經(jīng)歷:
2013.7-現(xiàn)在 北京化工大學(xué)材料科學(xué)與工程學(xué)院副教授, C類人才海外引進
2011.7-2013.7 美國密西根大學(xué)化學(xué)工程專業(yè), 博士后 ,導(dǎo)師:美國工程院院士Ronald Gary Larson
2003.9-2011.6 北京化工大學(xué)高分子材料科學(xué)與工程專業(yè), 本碩博連讀,導(dǎo)師:第一導(dǎo)師教育部長江學(xué)者、國家杰出青年基金獲得者張立群教授; 第二導(dǎo)師教育部新世紀(jì)優(yōu)秀人才支持計劃曹達(dá)鵬教授
二. 獲獎與榮譽:
2015年09月 獲第二屆中國國際復(fù)合材料科技大會(CCCM-2)優(yōu)秀論文獎
2013年09月 北京化工大學(xué)C類人才引進啟動基金
2010年10月 獲得中國石化 “英才獎學(xué)金”
2010年1月 獲得第十六屆全國復(fù)合材料學(xué)術(shù)會議優(yōu)秀論文獎
2009年6月 獲得北京化工大學(xué) “十大學(xué)術(shù)之星”稱號
2009年5月 獲得北京化工大學(xué) “優(yōu)秀研究生(博士生)” 稱號
2008年11月 獲得日本住友橡膠獎學(xué)金
2008年4月 獲得北京化工大學(xué) “優(yōu)秀研究生(碩士)”稱號
三. 主要研究方向:
為實現(xiàn)高分子納米復(fù)合材料具有優(yōu)異的力學(xué)、物理與多功能性能,本人采用實驗與計算機模擬手段相結(jié)合的方法,從分子水平上對納米顆粒的特性、分散、界面物理化學(xué)結(jié)合、大分子鏈物理化學(xué)結(jié)構(gòu)來設(shè)計制備新型納米復(fù)合材料。圍繞這些基礎(chǔ)科學(xué)問題,目前以第一作者與通訊作者身份發(fā)表論文20余篇,包括Advanced Functional Materials, Macromolecules, Soft Matter, Langmuir, Nanotechnology等國際權(quán)威期刊,期間參加學(xué)術(shù)會議共10次,做口頭報告6次。目前承擔(dān)國家自然科學(xué)基金一項,國家973兩項,北京市教委兩項,企業(yè)項目一項,北京化工大學(xué)啟動基金一項,累計共兩百余萬。
(a)通過計算機模擬技術(shù)首次考察了納米顆粒在聚合物熔體中的擴散行為,并對Stokes-Einstein定律的正確性進行了檢驗(Journal of Physical Chemistry C, 2008, 112, 6653)。模擬結(jié)果發(fā)現(xiàn)在納米顆粒尺寸大于分子鏈回轉(zhuǎn)半徑時( ), Stokes-Einstein方程能準(zhǔn)確描述納米顆粒的擴散行為, 而對 時,由于納米顆粒只探測到nano-viscosity而導(dǎo)致 Stokes-Einstein出現(xiàn)較大的偏差。該模擬結(jié)果很好的解釋了Mackay等人在實驗上的觀察結(jié)果(Nano Letters, 2007, 7, 1276)。 該文章目前已被引用70次,包括Progress in Polymer Science, Chemical Society Reviews, Soft matter, Macromolecules, Physical Review E等國際著名期刊。
(b)模擬了聚合物納米復(fù)合材料體系分子鏈動力學(xué)性能,首次發(fā)現(xiàn)了納米顆粒對分子整鏈松弛(terminal relaxation)的影響存在時間-溫度-濃度等效性(time-temperature-concentration)的關(guān)系(Macromolecules, 2009, 42, 2831)。實驗上在研究炭黑(carbon black)填充的高密度聚乙烯(HDPE)時也證實了該結(jié)論(Journal of Rheology, 2009, 53, 1379)。該文章被包括Macromolecules與Soft matter等引用。
(c)系統(tǒng)模擬了納米顆粒與表面接枝高分子鏈改性納米顆粒在聚合物基體中的分散行為與機理(Langmuir, 2011, 27, 7926; 2011, 27, 15213);聚合物分子鏈與納米顆粒界面物理與化學(xué)相互作用(Physical Chemistry Chemical Physics, 2011, 13, 13058)以及首次采用計算機模擬對聚合物納米復(fù)合材料的力學(xué)性能( )進行了考察(Physical Chemistry Chemical Physics, 2011, 13, 518)。結(jié)果表明對未接枝的納米顆粒分散,理論上存在一個最佳的界面相互作用來實現(xiàn)其均勻分散,太強或太弱的界面相互作用都會導(dǎo)致一定程度的聚集。這與Schweizer等人采用聚合物參考作用點模型(polymer reference interaction site model, PRISM)研究納米顆粒在聚合物中分散的結(jié)論是一致的(Macromolecules, 2005, 38, 8858)。對表面接枝改性的納米顆粒也存在一個最佳的接枝密度(grafting density)來實現(xiàn)其均勻分散。同時通過分子模擬發(fā)現(xiàn)界面區(qū)不存在 “聚合物玻璃化層” (polymer glassy layer)。納米顆粒對彈性體分子鏈力學(xué)性能增強的機理來自于兩個方面,一個是拉伸過程中納米顆粒誘導(dǎo)分子鏈的高度去向,另一個是在大變形下搭接在相鄰納米顆粒之間形成的橋鏈的有限鏈伸長(limited extensibility)。該成果促進了從整體上去理解與把握其結(jié)構(gòu)與性能間的定量關(guān)系。這些文章被包括Progress in Polymer Science, Nanotechnology, Journal of Materials Chemistry, Soft Matter與Macromolecules等引用。
(d)通過計算機模擬與實驗研究相結(jié)合,考察了炭黑填充丁苯橡膠的楊氏模量,拉伸強度與體積電導(dǎo)率隨炭黑體積分?jǐn)?shù)的變化,首次發(fā)現(xiàn)了類似于橡膠粒子提高塑料沖擊強度的逾滲現(xiàn)象(Physical Chemistry Chemical Physics, 2011, 12, 3014),。提出了臨界粒子間距這一新概念(critical inter-particle distance), 并對納米顆粒不能有效提高塑料基體的力學(xué)性能進行了解釋。該文章被包括ACS Nano, Journal of Materials Chemistry與Physical Review E等引用。
(e)基于碳納米彈簧,納米環(huán)與單層石墨烯的彈性可回復(fù)變形,首次將其加入到彈性體網(wǎng)絡(luò)中,模擬結(jié)果表明在良好分散與界面結(jié)合的情況下,碳納米彈簧在有效提高其力學(xué)性能的同時,能顯著的降低彈性體網(wǎng)絡(luò)在拉伸-回復(fù)過程中的滯后損失(hysteresis loss)(Advanced Functional Materials, 2013, 23, 1156).在當(dāng)前能源危機的背景下,該發(fā)現(xiàn)對有效降低汽車輪胎滾動過程中的滯后損失與油耗有著深遠(yuǎn)的意義,同時也為碳納米材料(carbon nano-structured materials)的大規(guī)模的工業(yè)化提供了一條有效的途徑。該研究成果在2013年的APS March Meeting上作為熱點新聞被Highlight.
http://www.newswise.com/articles/2013-aps-march-meeting-to-feature-advances-in-energy-armor-quantum-communication-medicine-and-much-more
Material Science Advances Energy Efficiency
Humanity consumes an enormous amount of energy transporting people and goods. Material science can aid in the quest to make our cars and trucks more energy efficient. Researchers from the Beijing University of Chemical Technology in China added helically shaped carbon nanosprings to rubbery polymers like those found in car tires. The scientists found that the springs significantly reduced energy loss when the polymer deformed and then sprang back to its original shape. Deformation cycles occur when automobile tires travel over bumpy roads and the researchers say incorporating carbon nanosprings into tire materials might significantly improve vehicle fuel efficiency. C31.00009– http://meetings.aps.org/Meeting/MAR13/Event/183563
四. 論文發(fā)表:
26. Jun Liu, Jianxiang Shen, Zijian Zheng, Youping Wu, Liqun Zhang, Revealing the toughening mechanism of graphene-polymer nanocomposite through molecular dynamics simulation; Nanotechnology, 26, (291003)2015.
25. Colon-Melendez Laura, Beltran-Villegas Daniel J, van Anders Greg, Jun Liu, Spellings Matthew, Sacanna Stefano, Pine David J, Glotzer Sharon C, Larson Ronald G, Solomon Michael J, Binding kinetics of lock and key colloids; Journal of Chemical Physics, 142(174909)2015.
24. Maziar Mohammadi, Eric D. Larson, Jun Liu and Ronald G. Larson; Brownian dynamics simulations of coagulation of dilute uniform and anisotropic particles under shear flow spanning low to high Peclet numbers; Journal of Chemical Physics; 142, 024108(1-16)(2015).
23. Jun Liu, Liqun Zhang, Editorial corner - a personal view Proper molecular level tool to explore the structure-property relationships in elastomer nanocomposites; Express Polymer Letters, 9, (582-582)2015.
22. Yangyang Gao, Dapeng Cao, Jun Liu*, Jianxiang Shen, Youping Wu, Liqun Zhang; Molecular dynamics simulation of the conductivity mechanism of nanorod filled polymer nanocomposites; Physical Chemistry Chemical Physics; 17,(22959-22968)2015.
21. Jianxiang Shen, Jun Liu, Haidong Li, Liqun Zhang, Molecular dynamics simulations of the structural, mechanical and visco-elastic properties of polymer nanocomposites filled with grafted nanoparticles, Physical Chemistry Chemical Physics; 17,( 7196-7207)2015.
20. Jun Liu, Jianxiang Shen, Yangyang Gao, Huanhuan Zhou, Youping Wu, Liqun Zhang*; Detailed simulation of the role of functionalized polymer chains on the structural, dynamic and mechanical properties of polymer nanocomposites; Soft Matter; 10, 8971-8984(2014).
19.Yangyang Gao, Jun Liu*, Jianxiang Shen, Youping Wu, Liqun Zhang*; Influence of various nanoparticle shapes on the interfacial chain mobility: a molecular dynamics simulation; Physical Chemistry Chemical Physics; 16, 21372-21382(2014).
18.Yangyang Gao, Jun Liu*, Jianxiang Shen, Dapeng Cao, Liqun Zhang*; Molecular dynamics simulation of the rupture mechanism in nanorod filled polymer nanocomposites; Physical Chemistry Chemical Physics, 16, 18483-18492(2014).
17. Jun Liu, Larson RG*; Brownian dynamics method for simulation of binding kinetics of patterned colloidal spheres with hydrodynamic interactions; Journal of Chemical Physics; 138, 174904(1-10)(2013).
16. Jun Liu, Yong-Lai Lu, Ming Tian, Fen Li, Jianxiang Shen, yangyang Gao, Liqun Zhang*; The Interesting Adjusting of "Nanospring" on the Viscoelasticity of Elastomeric Polymer Materials: Simulation and Experiment; Advanced Functional Materials; 2013,23, 1156.
15. Jun Liu, Liqun Zhang*, Dapeng Cao, Jianxiang Shen, yangyang Gao; Computational simulation of elastomer nanocomposites: current progress and future challenges; Rubber Chemistry and Technology; 2012, 85, 450-481. (An invited review)
14. Jun Liu, Yangyang Gao, Liqun Zhang*, Dapeng Cao*; Nanoparticle Dispersion and Aggregation in Polymer Nanocomposites: A Molecular Dynamics Simulation; Langmuir, 2011, 27, 15213.
13. Jun Liu,Wu Yan, Jianxiang Shen, yangyang Gao, Liqun Zhang*, Dapeng Cao*; Polymer-nanoparticle interfacial behavior revisited: A molecular dynamics study;Physical Chemistry Chemical Physics, 2011, 13, 13058.
12.Jun Liu,Sizhu Wu, Liqun Zhang*, Dapeng Cao*, Wenchuan Wang;Molecular dynamics simulation for insight into microscopic mechanism of polymer Reinforcement;Physical Chemistry Chemical Physics, 2011, 13, 518.
11.Jun Liu, Dapeng Cao*, Liqun Zhang*; Static and dynamic properties of model elastomers with various cross-linking densities: A molecular dynamics study; Journal of Chemical Physics, 2009, 131, 034903.
10.Jun Liu, Dapeng Cao*, Liqun Zhang*, Wenchuan Wang; Time-Temperature and Time-Concentration Superposition of Nanofilled Elastomers: A Molecular Dynamics Study; Macromolecules, 2009, 42, 2831.
9.Jun Liu, Dapeng Cao*, Liqun Zhang, Wenchuan Wang*; Static, rheological and mechanical properties of polymer nanocomposites studied by computer simulation; Physical Chemistry Chemical Physics, 2009, 11, 11365. (An invited perspective)
8. Jun Liu, Sizhu Wu, Dapeng Cao*, Liqun Zhang*; Effects of pressure on structure and dynamics of model elastomers: A molecular dynamics study; Journal of Chemical Physics, 2008, 129, 154905.
7. Jun Liu, Dapeng Cao*, Liqun Zhang*; Molecular Dynamics Study on Nanoparticle Diffusion in Polymer Melts: A Test of the Stokes-Einstein Law; Journal of Physical Chemistry C, 2008, 112, 6653.
6. Zhenhua Wang, Jun Liu(contributing equally with the first author), Sizhu Wu, Wenchuan Wang, Liqun Zhang*, Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers; Physical Chemistry Chemical Physics, 2010, 12, 3014.
5. Jianxiang Shen, Jun Liu, Yangyang Gao, Cao Dapeng*, Liqun Zhang*; Revisiting the Dispersion Mechanism of Grafted Nanoparticles in Polymer Matrix: A Detailed Molecular Dynamics Simulation; Langmuir, 2011, 27, 15213.
4. Zhenhua Wang, Yong-Lai Lu, Jun Liu, Zhi-Min Dang, Liqun Zhang*; Preparation of nanoalumina/EPDM composites with good performance in thermal conductivity and mechanical properties, Polymers for Advanced Technologies, 2011, 22, 2302.
3. Zhenhua Wang, Yong-Lai Lu, Jun Liu, Zhi-Min Dang, Liqun Zhang*; Preparation of Nano-Zinc Oxide/EPDM Composites with Both Good Thermal Conductivity and Mechanical Properties, Journal of Applied Polymer Science, 2011, 119, 1144.
2. Xiaohui Wu, Yiqing Wang, Jun Liu, Liqun Zhang*, Improved crack growth resistance and its molecular origin of natural rubber/carbon black by nanodispersed clay; Polymer Engineering and Science, 2012, 52, 1027.
1. 劉軍, 王振華, 吳絲竹, 盧詠來, 張立群, 橡膠納米補強中的逾滲機理和界面相互作用的研究, 橡 膠工業(yè), 2011, 58, 133.
五. 參加學(xué)術(shù)會議:
1. 劉軍,張立群;邀請報告; 綠色輪胎用彈性體納米復(fù)合材料全鏈條與跨尺度基礎(chǔ)科學(xué)問題;第116期“雙清論壇”,中國北京;2014年7月。
2. Jun Liu, Liqun Zhang; Invited Speaker; Elucidating and tuning the non-linear behavior of elastomer nanocomposites through molecular dynamics simulation; The 3rd International Conference on Nanomechanics and Nanocomposites (ICNN-3); Hongkong, China, May 2014.
3. Jun Liu, Liqun Zhang; Invited Speaker; Molecular dynamics simulation of elastomer nanocomposites: current achievements and future opportunities; 30th International Conference of The Polymer Processing Society(PPS-30); Cleveland, Ohio, USA, July 2014.
4. Jun Liu, Larson RG; Oral Presentation; Brownian Dynamics method for simulation of recognition kinetics between lock and key colloids; the 86th ACS Colloid and Surface Science Symposium; Baltimore, Maryland, June 2012.
5. Jun Liu, Larson RG; Oral Presentation; Brownian Dynamics Simulation of Recognition Kinetics Between Lock and Key Colloidal Particles; AICHE annual meeting; Pittsburgh, Pennsylvania, October 2012.
6. Jun Liu, Larson RG; Oral presentation; Brownian dynamics method for simulation of binding kinetics of patterned colloidal spheres with hydrodynamic interactions; the 84th Annual Meeting of the Society of Rheology; Pasadena, California, February 2013.
7. Jun Liu, Liqun Zhang, Dapeng Cao; Oral Presentation; The Interesting Influence of Nanosprings on the Viscoelasticity of Elastomeric Polymer Materials: Simulation and Experiment; 2013 APS March meeting; Baltimore, Maryland, March 18-22, 2013.
8. Jun Liu, Dapeng Cao, Liqun Zhang; Oral Presentation; Tuning the mechanical and visco-elastic properties of elastomer nanocomcoposites: a molecular dynamics simulation; 2013 CCCM-1; Beijing, China, September 10-13, 2013.
9. Jun Liu, Dapeng Cao, Liqun Zhang; Oral Presentation; Tuning the mechanical and visco-elastic properties of elastomer nanocomcoposites: a molecular dynamics simulation; 2013 Joint Symposium about soft matter of Beijing University of Chemical Technology and University of Cambridge;Beijing, China, September 25, 2013.
|
|||||||||||||||||
◇ 本人從事的主要研究方向: | |||||||||||||||||
高分子納米復(fù)合材料設(shè)計、合成與制備、結(jié)構(gòu)與性能關(guān)系實驗與計算機模擬研究 | |||||||||||||||||
|
|||||||||||||||||
|
|||||||||||||||||
◇ : 成果獲獎情況 | |||||||||||||||||
|
|||||||||||||||||
◇ :主持重大科研項目情況 | |||||||||||||||||
|
|||||||||||||||||
◇ :目前承擔(dān)的主要項目 | |||||||||||||||||
|
來源未注明“中國考研網(wǎng)”的資訊、文章等均為轉(zhuǎn)載,本網(wǎng)站轉(zhuǎn)載出于傳遞更多信息之目的,并不意味著贊同其觀點或證實其內(nèi)容的真實性,如涉及版權(quán)問題,請聯(lián)系本站管理員予以更改或刪除。如其他媒體、網(wǎng)站或個人從本網(wǎng)站下載使用,必須保留本網(wǎng)站注明的"稿件來源",并自負(fù)版權(quán)等法律責(zé)任。
來源注明“中國考研網(wǎng)”的文章,若需轉(zhuǎn)載請聯(lián)系管理員獲得相應(yīng)許可。
聯(lián)系方式:chinakaoyankefu@163.com
掃碼關(guān)注
了解考研最新消息
網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號