網站介紹 關于我們 聯(lián)系方式 廣告業(yè)務 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號
分類:導師信息 來源:中國考研網 2015-07-25 相關院校:蘭州大學
姓 名 | 張廷軍 | ||
---|---|---|---|
性 別 | 男 | ||
最高學歷 | 研究生 | ||
最高學位 | 博士 | ||
職 務 | 資源環(huán)境學院院長 | ||
職 稱 | “****”特聘教授 | ||
聯(lián)系方式 | tjzhang@lzu.edu.cn | ||
所在部門 | |||
研究方向 | 1) 雪、冰和凍土(包括多年凍土和季節(jié)凍土) 2) 寒區(qū)陸面過程與氣候變化 3) 土壤溫度和濕度 4) 有孔介質的熱量及質量傳輸 5) 冰凍圈與水文及碳循環(huán)之間的相互作用及反饋效應 6) 地球物理現(xiàn)象的數(shù)值模擬及其與觀測資料的對比研究 7) 應用衛(wèi)星遙感數(shù)據(jù)研究冰、雪及地表土壤凍融過程及寒區(qū)冰緣現(xiàn)象。 |
||
學習經歷 | 于1993年在美國阿拉斯加大學地球物理研究所獲地球物理學博士學位,1993-1995在地球物理所做博士后,在科羅拉多大學任研究員(1996-2005)和資深研究員(2006-至今)。 | ||
工作經歷 | 2008年當選為美國NOAA和科羅拉多大學綜合環(huán)境科學研究院(CIRES)院士(Fellow)。蘭州大學國家“****”特聘教授,博士生導師, | ||
主講課程 | |||
學術組織兼職 | 擔任歐洲地球物理學會(EGU)《The Cryosphere》編輯,美國地球物理學會(AGU)《Journal of Geophysical Research – Earth Surface》副編輯,以及美國《Cold Regions Science and Technology》、 中國《Sciences in Cold and Arid Regions》,《冰川凍土》和《氣候變化研究進展》等學術雜志編委,曾擔任美國AGU 《Journal of Geophysical Research》、 美國《Arctic, Antarctic, and Alpine Research》、及《Cold Regions Science and Technology》客座主編。 | ||
研究成果 | 自1982年以來,張廷軍博士先后發(fā)表學術論文及書評140余篇,其中100多篇發(fā)表于國際SCI的學術雜志上。突出成果包括: 1)凍土分布:系統(tǒng)地研究了北半球多年凍土及地下冰分布特征,發(fā)現(xiàn)多年凍土區(qū)約占24%的北半球陸地面積,超飽和地下冰水當量約為10cm的等量海面變化值。應用衛(wèi)星及數(shù)值模擬,首次系統(tǒng)地提示了北半球季節(jié)凍土的分布及其變化,該數(shù)據(jù)被廣泛應用為全球權威參考值,有關論文被聯(lián)合國氣象組織的政府間全球氣候變化(IPCC)第三次(2001)及第四次(2007)評估報告引用。他的論文《北半球多年凍土分布特征》一文被國際《極地地理》雜志評為30年來引用次數(shù)最高論文之一,并于2009年將此文在該雜志重新全文發(fā)表。 2)凍土與氣候變化:自二十世紀以來,極地地區(qū)多年凍土表面溫度升高了約2-7℃,然而同時期氣溫變化只有約1℃左右。因而對造成極地地區(qū)多年凍土升溫的主要原因在國際凍土界引起了廣泛的重視。張廷軍博士首先提出季節(jié)性積雪的變化是造成極地地區(qū)多年凍土升溫的主要原因。自1993年以來,他先后在這方面發(fā)表學術論文10余篇,其成果受到國內外同行的廣泛重視。美國地球物理學會最權威性雜志《地球物理綜述》(Reviewers of Geophysics)主編于2004年特邀張廷軍博士撰寫有關凍土與積雪方面的論文。“季節(jié)性積雪對土壤溫度場的影響”一文與2005年在該雜志發(fā)表并被廣泛應用。鑒于張廷軍博士在凍土與氣候變化方面的研究成果,美國航空航天署(NASA)及國家科學基金委員會(NSF)同時推薦他為國際政府間氣候變化(IPCC)第四次評估報告的主要執(zhí)筆者。 3)凍土與碳循環(huán):張廷軍博士及他的研究團隊提出由于氣候變暖,多年凍土退化,極地多年凍土地區(qū)在未來幾十年內將從目前的碳匯區(qū)變成碳源區(qū)。雖然氣候變暖,凍土活動層變厚,植物生長期延長,有利于植物生長,促進極地土壤的碳匯作用。但同時保留在多年凍土中的古代碳將參與地球~大氣間的碳循環(huán),多年凍土中的古代碳將釋放于大氣,其總量將于未來幾十年內超過同期的土壤碳匯作用,使極地地區(qū)成為大氣的碳源,進一步增加大氣中的碳含量,對全球變化起到正反饋效應。 4)凍土與水循環(huán):應用衛(wèi)星遙感資料及有關實地觀測,張廷軍博士及他的研究團隊提供了大量的凍土時空分面資料,為流域及區(qū)域水循環(huán)評估及水文模型提供數(shù)據(jù)。同時,對西伯利亞多年凍土區(qū)自上個世紀三十年代以來河流流量增加的原因提出了新的解釋。他首次提出 西伯利亞多年凍土區(qū)地下冰融化水很可能是其河流流量增加的主要原因,并應用有關實地觀測資料驗證了此觀點,為全面掌握及理解極地地區(qū)水文循環(huán)做出了貢獻。 5)土壤季節(jié)凍融循環(huán)及其與大氣間的相互作用:應用實地觀測,衛(wèi)星遙感及數(shù)值模擬,張廷軍博士對北半球土壤季節(jié)凍融進行了系統(tǒng)的研究,編制了北半球30年(1971-2000年)土壤季節(jié)凍融逐月平均分布圖及其變化,揭示了北半球土壤季節(jié)凍結范圍在變小。自二十世紀初以來,土壤季節(jié)凍結范圍減少了約7%,此結果被廣泛引用,包括IPCC第四次評估報告。同時發(fā)現(xiàn)多年凍土區(qū)活動厚度在增加,非多年凍土區(qū)季節(jié)凍結厚度在減少。首次揭示土壤的季節(jié)凍融過程對深層土壤與大氣間的熱物質交換有去耦作用。土壤中水份季節(jié)性相變強度對大氣有約3-6個月的記錄及反饋效應。這對中長期氣候預報有著非常重要的意義,有待進一步研究。 對多年凍土區(qū)熱融湖泊,湖泊融區(qū),凍土遙感,土壤凍融過程數(shù)據(jù)模擬,大氣及云對區(qū)域能量平衡及積雪融化,極地地區(qū)氣候及其變化,季節(jié)性積雪,青藏高原凍土環(huán)境變化及其對工程建筑的影響等都有深入地研究。 |
||
獲得榮譽 | 自1993年以來,先后主持及參與了30多項美國自然科學基金(NSF),航空航天署(NASA),海洋大氣署(NOAA),和能源部(DOE)科研項目及多項國內科技部和基金委研究項目。多次組織國內外學術會議,在國內外學術會議、大專院校及科研機構作特邀學術報告。應邀參加了聯(lián)合國政府間氣候變化委員會(IPCC)第四次(2003-2007)和第五次(2009-2013)評估報告的編篆工作,是主要執(zhí)筆者之一,主要負責全球凍土(多年凍土及季節(jié)凍土)的變化評估。政府間氣候變化委員會(IPCC)同美國前副總統(tǒng)(Al Gore)共同榮獲2007年度諾貝爾和平獎。獲中國科學院蘭州分院1985年度新長征突擊手,2008年度《Cold Regions Science and Technology》雜志最佳審稿獎(Top Reviewer Award)。他在《Polar Geography》的論文獲該雜志創(chuàng)刊以來(>30年)最高引用率獎(前五名之一)。 | ||
在研項目 |
(1) 主持人,“北美地區(qū)土壤凍融對碳循環(huán)的作用”(Impacts of Soil Freeze/Thaw Dynamics on the North American Carbon Cycle),由美國航空航天署(NASA)資助,2006年8月15日至 2011年8月14日;
(2)主持人,“西伯利亞極地及亞極地地區(qū)多年凍土變化研究”(Documenting Changes in Permafrost over Siberian Arctic and Subarctic),由阿拉斯加大學國際極地研究中心資助,2008年7月1日至 2012年6月30日; (3)合作主持人,“國際極地年(IPY)聯(lián)合研究:負溫下微生物過程及其對凍土中生物地球化學過程的影響”(IPY Collaborative Research: Microbial subzero activity and its impact on biogeochemical processes in frozen tundra and permafrost),美國國家科學基金會資助,2008年1月至2011年12月; (4) 主持人,“地區(qū)、區(qū)域和全球規(guī)模的土壤凍融循環(huán)研究”(Freeze-thaw cycle of soils at local-, regional-, and global-scales),由航空航天署(NASA)資助,2003年9月1日至2009年9月30日; (5) 合作主持人,“聯(lián)合研究:多年凍土模型對比研究”(Collaborative Research: Permafrost model comparison study),則美國科學基金會(NSF)資助,2004年3月 至2009年2月。 |
||
發(fā)表論文 |
1. Yang, Xingguo, Tingjun Zhang, Qin Dahe, Kang Shichang, Qin Xiang, and Liu Hongyi: Seasonal Characteristics of Surface Meteorological and Radiative Fluxes on the East Rongbuk Glacier in the Mt. Qomolangma (Mt. Everest) Region, J. Geophys. Res., (accepted).
2. Wu, Qingbai, Tingjun Zhang, and Y. Liu: Permafrost temperatures and thickness on the Qinghai Tibetan Plateau, (accepted). 3. Schaefer, K., Tingjun Zhang, A. G. Slater, L. Lu, A. Etringer, and I. Baker, Improving simulated soil temperatures and soil freeze/thaw at high latitude regions in the SiBCASA model, J. Geophys. Res., (accepted). 4. Zhang, Tingjun, Rui Jin, and Feng Gao. Overview of satellite remote sensing of surface soil freezing and thawing, I: Visible and active microwave sensors, Journal of Remote Sensing and Environments, (accepted). 5. Zhang, Tingjun, Rui Jin, and Feng Gao, Overview of satellite remote sensing of surface soil freezing and thawing, II: Passive microwave sensors, Journal of Remote Sensing and Environments, (accepted). 6. Ma, L., T. Zhang, O. W. Frauenfeld, B. Ye, D. Yang, and D. Qin (2009), Evaluation of precipitation from the ERA-40,NCEP-1, and NCEP-2 Reanalyses and CMAP-1, CMAP-2, and GPCP-2 with ground-based measurements in China, J. Geophys. Res., 114, D09105, doi:10.1029/2008JD011178. 7. Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A. and Brown, J. (2008): 'Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere', Polar Geography,31:1,47 – 68. 8. Wu, Q., and Tingjun Zhang (2008), Recent permafrost warming on the Qinghai-Tibetan Plateau, J. Geophys. Res., 113, D13108, doi:10.1029/2007JD009539. 9. Ma, Lijuan, Tingjun Zhang, Qingxiang Li, O. W. Frauenfeld, and Dahe Qing (2008). Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis air temperatures with ground-based measurements in China, J. Geophys. Res., 113, D15115, doi:10.1029/2007JD009549 10. Wu, Q., Zijian Lu, Tingjun Zhang, Wei Ma, and Yongzhi Liu (2008): Analysis of cooling effect of crushed rock embankment of the Qinghai-Xizang Railway, Cold Regions Science and Technology, 53(3), 271-282. 11. Zhang, Tingjun, Barry Baker, and Guodong Cheng (2008), Qinghai-Xizang Railway – A new milestone project in permafrost regions, Cold Regions Science and Technology, 53(3), 229-240. 12. Che, Tao, Xin Li, Rui Jin, Richard Armstrong, and Tingjun Zhang (2008), Snow depth derived from passive microwave remote-sensing data in China, Annals of Glaciology, 49, 145-154. 13. Zhang, Tingjun and Daqing Yang (2008), Tribute: A Legendary Glaciologist: Academician Shi Yafeng on his Ninetieth Birthday, Arctic, Antarctic, and Alpine Research, DOI: 10.1657/1523-0430(2008-1), [TRIBUTE] 2.0.CO; 2 14. Bojariu, R.; Garcia-Herrera, R.; Gimeno, L.; Zhang, T.; Frauenfeld, O. W., 2008: Cryosphere-atmosphere interaction related to NAO variability and change. In Trends and Directions in Climate Research: Ann. N.Y. Acad. Sci. 1146: 50–59 (2008). doi: 10.1196/annals.1446.018 C _ 2008 New York Academy of Sciences. 15. Parsons, M. A.; Smith, S. L.; Romanovsky, V. E.; Shiklomanov, N. I.; Christiansen, H. H.; Overduin, P. P.; Zhang, T.; Balks, M. R.; Brown J.; 2008: Managing Permafrost Data: Past Approaches and Future Directions. Proc. Ninth International Conference on Permafrost, 2(6), 1369–1374. 16. PaiMazumder, D., J. Miller, Z. Li, J. E. Walsh, A. Etringer, J. McCreight, T. Zhang, and N. Molders, Evaluation of Community Climate System Model soil temperatures using observations from Russia, Theor. Appl. Climatol. (2008), doi: 10.1007/s00704-007-0350-0. 17. White, D., Larry Hinzman, Lilian Alessa, John Cassano, Molly Chambers, Kelly Falkner, Jennifer Francis, William J. Gutowski Jr., Marika Holland, R. Max Holmes, Henry Huntington, Douglas Kane, Andrew Kliskey, Craig Lee, James McClelland, Bruce Peterson, T. Scott Rupp, Fiamma Straneo, Michael Steele, Rebecca Woodgate, Daqing Yang, Kenji Yoshikawa, and Tingjun Zhang,The arctic freshwater system: Changes and impacts, J. Geophys. Res., 112, G04S54, doi:10.1029/2006JG000353. 18. Fan, G., Tingjun Zhang, Jinjun Ji, Kerang Li, and Jiyuan Liu, 2007: Numerical simulation of the carbon cycle over the Tibetan Plateau, China, Arctic, Antarctic, and Alpine Research, 39(4), 723-732. 19. Lemke, P., J. Ren, R.B. Alley, I Allison, J. Carrasco, G. Flato, Y. Fujii, G. Kaser, P. Mote, R.H. Thomas and T. Zhang, 2007: Observations: Changes in Snow, Ice and Frozen Ground. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 20. Scheafer, K., T. Zhang, P. Tans, and R. Stockli, Soil temperature reemergence in seasonally frozen ground regions, J. Geophysi. Res., 112, D20102, doi:10.1029/2007JD008630. 21. Ling, F. and T. Zhang, Modeled impacts of changes in tundra snow thickness on ground thermal regime and heat flow to the atmosphere in Northernmost Alaska, Global and Planetary Change, 57(2007), 235-246. 22. Anisimov, O.A., V. Lobanov, S. Reneva, N. Shiklomanov, T. Zhang, and F. Nelson (2007), Uncertainties in gridded air temperature fields and effects on predictive active layer modeling, J. Geophys. Res., 112, F02S14, doi:10.1029/2006JF000593. 23. Zhang, T., F. Nelson, and S. Gruber (2007), Introduction to Special Section: Permafrost and seasonally frozen ground under a changing climate, J. Geophys. Res., 112, F02S01, doi:10.1029/2007JF000821. 24. Oelke, C. and T. Zhang, 2007: Modeling the soil thermal regime of the Tibetan Plateau, Arctic, Antarctic, and Alpine Reseaerch, 39(4), 714-722. 25. Saito, K., M. Kimoto, T. Zhang, K. Takata, S. Emori (2007), Changes in hydro-thermal regimes in frozen ground regions under global warming scenarios simulated by a high-resolution climate model, J. Geophys. Res., 112, F02S11, doi:10.1029/2006JF000577. 26. Shiklomanov, N. I., O. A. Anisimov, T. Zhang, S. Marchenko, F. Nelson, and C. Oelke (2007), Analysis of model-produced permafrost active layer fields: Results for northern Alaska, J. Geophys. Res., 112, F02S10, doi:10.1029/2006JF000571. 27. Zhang, T., 2007: Perspectives on environmental study of response to climatic and land use and land cover change over the Qinghai-Tibetan Plateau: An introduction, Arctic, Antarctic, and Alpine Research, 39(4), 631-634. 28. Duo Chu, Lixin Lu, and T. Zhang, 2007: Sensitivity of NDVI to Seasonal and Inter-annual Climate Conditions in Lhasa area, Tibetan Plateau, Arctic, Antarctic, and Alpine Research 39(4), 635-641. 29. Frauenfeld, Oliver W., T. Zhang, and James McCreight, 2006. Climatology and variability of Northern Hemisphere Freezing/Thing Index in the 20th Century, International Journal of Climatology, 27(1), 47-63, doi:10.1002/joc.1372. 30. Chudinova, S. M., O. W. Frauenfeld, R. G. Barry, T. Zhang, and V. A. Sorokvikov, 2006. Relationship between air and soil temperature trends and periodicities in the permafrost regions of Russia, J. Geophys. Res., 111, F02008, doi:10.1029/2005JF00342. 31. Ling, F. and T. Zhang, 2006: Sensitivity of ground thermal regime and surface energy fluxes to tundra snow density in northern Alaska, Cold Regions Science and Technology, 42(2), 121-130. 32. Zhang, T., 2005. Influence of the seasonal snow cover on the ground thermal regime: An overview, Reviews of Geophysics, 43, RG4002, doi:10.1029/2004RG000157. 33. Zhang, T., O. W. Frauenfeld, M. C. Serreze, A. Etringer, C. Oelke, J. McCreight, R. G. Barry, D. Gilichinsky, D. Yang, H. Ye, F. Ling, and S. Chudinova, 2005: Spatial and temporal variability of active layer thickness over the Russian Arctic drainage basin, J. Geophys. Res., 110, D16101, doi:10.1029/2004JD005642. 34. Duguay, C. R., T. Zhang, D. W. Leverington, and V. E. Romanovsky, 2005: Satellite remote sensing of permafrost and seasonally frozen ground, in Remote Sensing in Northern Hydrology, edited by Duguay, C. R. and A. Pietroniro, Geophysical Monograph 163, American Geophysical Union, Washington, D.C., pp. 91-118. 35. Ling, F. and T. Zhang, 2005: Modeling the effect of variations in snowpack-disappearance date on surface-energy balance on the Alaksan North Slope, Arctic, Antarctic, and Alpine Research, 37(4), 483-489. 36. Zhang, T., 2005. Historical Overview of permafrost studies in China, Physical Geography, 26(4), 279-298. 37. Frauenfeld, O. W., T. Zhang, and M. C. Serreze (2005), Climate change and variability using European Center for Medium-Range Weather Forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau, J. Geophys. Res., 110, D02101, doi:10.1029/2004JD005230. 38. Li, Chuan, Tingjun Zhang, and Jing Chen, 2004. Climate change in the past 40 years over the Qinghai-Tibetan Plateau – comparison studies of ERA-40 and NCEP reanalysis data with ground-based measurements, Plateau Meteorology, 23, 97-103, (in Chinese with English abstract). 39. Zhang, T., Roger G. Barry, and Richard L. Armstrong, 2004. Application of Satellite Remote Sensing on Frozen Ground Studies, Polar Geography, 28(3), 193-196. 40. Oelke, C., T. Zhang, and M. C. Serreze, 2004: Modeling evidence for recent warming of the Arctic soil thermal regime, Geophysics Research Letters, 31, L07208, doi:10.1029/2003GL019300, 2004. 41. Frauenfeld, O., T. Zhang, Roger G. Barry, and David G. Gilichinsky, Interdecadal changes in seasonal freeze and thaw depths in Russia, J. Geophys. Res, 109, D05101, doi:10.1029/2003JD004245, 2004. 42. Ye, Hengchun, D. Yang, T. Zhang, X. Zhang, and S. Ladochy, and M. Ellison, The impact of climatic condition on seasonal river discharges in Siberia, Journal of Hydrometeorlogy, 5, 286-295, 2004. 43. Ling, F. and T. Zhang, A surface energy balance approach based finite difference model for thermal regime of permafrost containing unfrozen water, Cold Regions Science and Technology, 38(1), 1-15, 2004. 44. Oelke, Christoph and T. Zhang: A model study of circum-arctic soil temperatures, Permafrost and Periglacial Processes, 2004. 45. Ling, F. and T. Zhang, Numerical simulation of talik freeze-up and permafrost response under drained thaw lakes on the Alaksan Arctic Coastal Plain, J. Geophys. Res., 109, D01111, doi:/10.1029/2003JD3886, 2004. 46. Zhang, T., R. L. Armstrong, and Jeff. Smith, 2003. Investigation of the near-surface soil freeze/thaw cycle in the contiguous United States: Algorithm development and validation, J. Geophys. Res., 108(D22), 8860, doi:10.1029/2003JD003530, 2003. 47. Ye, Hengchun, D. Yang, X. Zhang, and T. Zhang: Connections of Yenisei River discharge to sea surface temperatures, sea ice, and atmospheric circulation, Journal of Geophysical Research – Atmosphere, 108(D24), 4776, doi:10.1029/2003ID003759, 2003.. 48. Ling, F. and T. Zhang, 2003. Impact of the timing and duration of seasonal snow cover on the active layer and permafrost in the Alaskan Arctic, Permafrost and Periglaical Processes, 14, 141-150. 49. Ling, F. and T. Zhang, 2003. Numerical simulation of permafrost thermal regime and talik formation under shallow thaw lakes in the Alaskan Arctic, J. Geophys. Res., 108(D16), 4511, doi:10.1029/2002JD003014, 2003. 50. Oelke, Christoph, T. Zhang, Mark Serreze, and Richard Armstrong, 2003. Regional-scale modeling of soil freeze/thaw over the Arctic drainage basin, J. Geophys. Res., 108(D10), 4314, doi:10.1029/2002JD002722. 51. Zhang, T., T. Scambos, T. Haran, L. D. Hinzman, R. G. Barry, and D. L. Kane, 2003. Ground-based and satellite-derived measurements of surface albedo on the North Slope of Alaska, USA, J. Hydrometeorology, 4(1), 77-91. 52. Yang, Daqing, Douglas L. Kane, Larry D. Hinzman, Xuebin Zhang, Tingjun Zhang, and Hengchun Ye, 2003. Siberian Lena River Hydrologic Regime and Recent Change, J. Geophys. Res., 107(D23), 4694, doi:10.1029/2002JD002542. 53. Zhang, T., R.G. Barry, K. Knowles, F. Ling, and R.L. Armstrong, 2003. Distribution of seasonally and perenially frozen ground in the Northern Hemisphere, Proceedings of the 8th International Conference on Permafrost, M. Phillips, S. M. Springman, and L. U. Arenson, eds., Zurich, Switzerland, July 21-25, 2003, A. A. Balkema Publishers. Vol. 2, 1289-1294. 54. Serreze, Mark C., David H. Bromwich, Martyn P. Clark, Andrew J. Etringer, T. Zhang, and Richard Lammers, 2003. The large-scale hydro-climatology of the terrestrial Arctic drainage system, J. Geophys. Res., 107, 816, doi:10.1029/2001JD.000919-1, 2003. 55. Zhang, T., A major milestone of permafrost study in China: review of “Geocryology in China”, Journal of Glacology and Geocryology, 12(4), 375-385, 2002. 56. Zhang, T., 2002. Frozen ground study in China: a review, Journal of Glaciology and Geocryology, 12(4), 345-350. 57. Ling, F. and T. Zhang, 2002. A two-dimensional heat transfer model for atmosphere-land system in the lake-dominated Alaskan North Slope, Journal of Xijiang University, 22:1-7 58. Zhang, T., Roger G. Barry, and W. Haeberli, 2001. Numerical simulations of the influence of the seasonal snow cover on the occurrence of permafrost, Norwegian Journal of Geography, 55(4), 261-266. 59. Zhang, T., Roger G. Barry, D. Gilichinsky, S. S. Bykhovets, V. A. Sorokovikov, and Jingping Ye, 2001. An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia, Climatic Change, 49, 1-2, 41-76. 60. Zhang, T., K. Stamnes, and Sue Ann Bowling, 2001. Impact of the atmospheric thickness on the atmospheric downwelling longwave radiation during snowmelt in the Arctic and Subarctic. J. Climate, 14(5), 920-939. 61. Zhang, T. and R. L. Armstrong, 2001. Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing, Geophysical Research Letters, 28(5), 763-766. 62. Gilichinsky, D.A., S.S. Bykhovets, V.A. Sorokovikov, D.G. Fedorov-Davydov, R.G. Barry, T. Zhang, M.K. Gavrilova, O.I. Alexeeva, 2000. Use of the data of hydrometeorological survey for century history of soil temperature trends in the seasonally frozen and permafrost areas of Russia, Kriosfera Zemli (The Earth Cryosphere), 4(3), 59-66. (in Russian with English abstract). 63. Zhang, T., J. A. Heginbottom, Roger G. Barry, and J. Brown, 2000. Further statistics on the distribution of permafrost and ground-ice in the Northern Hemipshere, Polar Geography, 24(2), 126-131. 64. Zhang, T. and M. O. Jeffries, 2000. Modeling inter-decadal variations of lake ice thickness and sensitivity to climatic change in northernmost Alaska, Annals of Glaciology, 31, 339-347. 65. Liu, F., J. Sun, T. Zhang, and G. Cheng, Characteristics of surface radiative fluxes and cloud-radiative forcing with a focus on the Arctic, J. of Glaciology and Geocryology (English version), 22(4), 2000, 384-390. 66. Serreze, M.C., J.E. Walsh, F.S. Chapin, T. Osterkamp, M. Dyurgerov, V. Romanovsky, W.C. Oechel, J. Morison, T. Zhang, and R. Barry, 1999. Observational evidence of recent change in the northern high-latitude environment, Climatic Change, 46, 159-207. 67. Gilichinsky, D. A., S. S. Bykhovets, V. A. Sorokovikov, D. G. Fedorov-Davydov, R. G. Barry, T. Zhang, M. K. Gavrilova, and O. I. Alexeeva, 2000. Use of the data of hydrometeorological survey for century history of soil temperature trends in the seasonally frozen and permafrost areas of Russia, The Earth Cryosphere, 4(3), 59-66. (in Russian). 68. Zhang, T., Roger G. Barry, K. Knowles, J. A. Heginbottom, and J. Brown, 1999. Statistics and characteristics of permafrost and ground ice distribution in the Northern Hemisphere, Polar Geography, 23(2), 147-169. 69. Jeffries, M, O., T. Zhang, K. Krey, and N. Kozlenko, 1999: Conductive heat flux through the snow cover on lakes and tundra in late winter on the Alaskan North Slope, Journal of Glaciology,.45(150), 315-324. 70. Gilichinsky, D.A., R.G. Barry, S.S. Bykhovets, V.A. Sorokovikov, T. Zhang, S.L. Zudin, and D.G. Fedorov-Davydov, 1998: A century of temperature observations of soil climate: methods of analysis and long-term trends, in Proceedings of the 7th International Conference on Permafrost, Yellowknife, Canada, June 22-27, 1998, p. 313-317. 71. Zhang, T., 1998: Climate and permafrost conditions in northern Alaska, USA, The Earth Geocryosphere, The Russian Academy of Sciences, Siberian Branch, 2(1): 19-27, (in Russian with English abstract). 72. Zhang, T. and K. Stamnes, 1998. Impact of climatic factors on the active layer and permafrost at Barrow, Alaska, Permafrost and Periglacial Processes, 9(3), 229-246. 73. Zhang, T., T. E. Osterkamp, and K. Stamnes, 1997. Effects of climate on the active layer and permafrost on the North Slope of Alaska, Permafrost and Periglacial Processes, 8(1): 45-67. 74. Zhang, T., S. A. Bowling, and K. Stamnes, 1997. Impact of the atmosphere on the surface radiative fluxes and snowmelt in the Arctic and Subarctic, J. Geophys. Res., 102 (D4), 4,287-4,302. 75. Zhang, T., T. E. Osterkamp, and K. Stamnes, 1996. Some characteristics of the climate in northern Alaska, Arctic and Alpine Research, 28(4), 509-518. 76. Zhang, T., K. Stamnes, and S. A. Bowling, 1996. Impact of clouds on surface radiative fluxes and snowmelt in the Arctic and Subarctic, J. of Climate, 9(9), 2,110-2,123. 77. Zhang, T., T. E. Osterkamp, and K. Stamnes, 1996. Influence of the depth hoar layer of the seasonal snow cover on the ground thermal regime, Water Resources Research, 32(7), 2,075-2,086. 78. Zhang, T. and T. E. Osterkamp, 1995. Considerations in determining thermal diffusivity from temperature time series using numerical methods, Cold Regions Science and Technology, 23, 333-341. 79. Zhang, T., 1995. Impact of the depth hoar layer of snowpack on the ground thermal regime, in Proceedings of the 1995 International Mechanical Engineering Congress and Exposition, San Francisco, paper No. 95-WA/HT-47. 80. Osterkamp, T. E., T. Zhang, and V. E. Romanovsky, 1994. Evidence for a cyclic variation of permafrost temperatures in northern Alaska, Permafrost and Periglacial Processes, 5(3), 137-144. 81. Zhang, T. and T. E. Osterkamp, 1993. Changing climate and permafrost temperatures in the Alaskan Arctic, in Proceedings of the 6th International Conference on Permafrost, Beijing, China, July 5-9, 1993, South China University of Technology Press, Vol. 1, 783-788. 82. Zhang, T., T. E. Osterkamp, and J. Gosink, 1991. A model for the thermal regime of permafrost within the depth of annual temperature variations, in Proceedings of the 3rd International Symposium on Cold Regions Heat Transfer, June 11-14, 1991, Fairbanks, Alaska, University of Alaska Fairbanks, 341-347. 83. Wang, S. and T. Zhang, 1989. Periglacial phenomena along Qinghai-Xizang Highway of the Kunlun mountainous regions, Mountain Research, 7(3), 139-147. 84. Wang, S., P. Wang, and T. Zhang, 1989. Applications of environmental isotope tritium to research into ground ice in permafrost regions of the Qinghai-Xizang Plateau, J. of Glaciol. and Geocryology, 11(1), 58-67. 85. Zhang, T. and S. Wang, 1987. Approach to some problems on periglacial processes in the continental climate, J. of Glaciol. and Geocryol., 9(4), 318-327. 86. Tong, B., S. Li, and T. Zhang, 1986. Frozen ground in the Altai Mountains of China, J. of Glaciol. and Geocryol., 8(4), 357-364. 87. Li, S., B. Tong, and T. Zhang, 1985. Periglacial phenomena in the Altai Mountains of China, J. of Glaciol. and Geocryol., 7(1), 51-56. 88. Zhang, T., B. Tong, and S. Li, 1985. Influence of snow cover on the lower limit of permafrost in the Altai Mountains, J. of Glaciol. and Geocryol., 7(1), 57-64. 89. Tong, B., S. Li, T. Zhang, and Y. He, 1983. Frozen ground in the Altai Mountains of China, in Proceedings of the 4th International Conference on Permafrost, July 17-22, 1983, Fairbanks, Alaska, National Academy Press, Washington, D.C., Vol. 1, 1,267-1,272. 90. Zhang, W. and T. Zhang, 1982. Polygonal soil along the Highway between Qinghai-Xizang (Tibet), J. of Glaciol. and Geocryol., 4(3), 80-89. |
掃碼關注
考研信息一網打盡
網站介紹 關于我們 聯(lián)系方式 廣告業(yè)務 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號