網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號
分類:導(dǎo)師信息 來源:福州大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院 2019-09-03 相關(guān)院校:福州大學(xué)
福州大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院計(jì)算機(jī)圖形學(xué)與多媒體/人工智能研究生導(dǎo)師夏又生介紹如下:
基本信息
姓名 夏又生
職稱 教授
職務(wù) 博士生導(dǎo)師
主講課程 數(shù)值計(jì)算方法,人工神經(jīng)網(wǎng)絡(luò),神經(jīng)動(dòng)力學(xué)優(yōu)化算法及應(yīng)用,神經(jīng)計(jì)算原理及應(yīng)用
研究方向 智能計(jì)算與模式識(shí)別
辦公室 數(shù)計(jì)學(xué)院2號樓106
電子郵件 ysxia@fzu.edu.cn
聯(lián)系電話 0591-22865171
個(gè)人簡介
研究興趣:圖像配準(zhǔn)與融合,盲圖像恢復(fù)與重建,圖像超分辨,隨機(jī)優(yōu)化算法
講授課程
本科生:數(shù)值計(jì)算方法,人工神經(jīng)網(wǎng)絡(luò)等
碩士生:神經(jīng)動(dòng)力學(xué)優(yōu)化算法及應(yīng)用,神經(jīng)計(jì)算原理及應(yīng)用
主持科研項(xiàng)目
(1) 基于廣義約束最小絕對偏差估計(jì)的盲圖像恢復(fù)神經(jīng)網(wǎng)絡(luò)算法,國家自然科學(xué)基金面上項(xiàng)目,2009.1-2011.12。
(2) 有色噪聲下基于噪聲約束最小均方估計(jì)的語音增強(qiáng)算法, 國家自然科學(xué)基金面上項(xiàng)目,2012.1-2015.12。
獲獎(jiǎng)
基于優(yōu)化的非線性系統(tǒng)智能建模與控制,2010年高等學(xué)校科學(xué)研究優(yōu)秀成果獎(jiǎng)自然科學(xué)獎(jiǎng)二等獎(jiǎng)(排名第二)
主要論文
1.系統(tǒng)參數(shù)辯識(shí)與語音增強(qiáng)研究工作
[1] 夏又生, Z.P. Deng,X. Zheng, Analysis and application of a novel fast algorithm for 2-D ARMA model parameter estimation, Automatica, vol. 49, pp 3056-3064, 2013.
[2] 夏又生, M. Kamel, and H. Leung ,A Fast Algorithm for AR Parameter Estimation Using A Novel Constrained Least Squares method,Neural Networks, vol. 33, pp. 396-405, 2010.
[3] 夏又生 M. Kamel, A generalized least absolute deviation method for parameter estimation of autoregressive signals, IEEE Transactions on Neural Networks,vol.19,107-118, 2008 .
[4] Y.S. Xia, L. Henry, and N. Xie ``A New Regression estimator with neural network realization", IEEE Transactions on Signal Processing, vol. 53, pp.672-685, 2005.
[5] 陳志慶, 夏又生,A Fast Algorithm For Vector ARMA Parameter Estimation, International Conference on Electrical and Engineering and Automatic Control, vol. 3, pp178-181, Zibo, China, 2010.
[6] 夏又生, 俞穎, Speech Enhancement Using Generalized Least Absolute Deviation Estimation,International Conference on Audio, Language and Image Processing,vol. 1, pp. 64-68, Shanghai, China, 2010 .
2. 數(shù)據(jù)融合研究工作:
[1] 夏又生 and H. Leung,Performance analysis of statistical optimal data fusion algorithms, Information Science, 2014.
[2] 夏又生 and H. Leung,A Fast Learning Algorithm for Blind Data Fusion Using A Novel L2-Norm Estimation,IEEE Sensors Journal, vol.14, pp. 666 – 672, 2014.
[3] 夏又生 M. Kamel, Cooperative learning algorithms for data fusion using novel L1 estimation, IEEE Transactions on Signal Processing, vol. 56, 1083-1095,2008 .
[4] 夏又生 and M. Kamel, A Measurement Fusion Method for Nonlinear System Identification and Its Cooperative Learning Algorithm , Neural Computation, Vol. 19, pp. 1589-1632, 2007.
[5] 夏又生, Leung H, Nonlinear spatial-temporal prediction based on optimal fusion, IEEE TRANSACTIONS ON NEURAL NETWORKS , vol. 17 , 975-988 Published: 2006
3. 圖像恢復(fù)與重建研究工作
[1] 夏又生,Sun C., and Zheng WX, A Discrete-Time Neural Network for Fast Solving Large Linear L1-norm Estimation Problems and its Application to Image Restoration, IEEE Transactions on Neural Networks and Learning Systems, vol.23 , pp. 812 - 820 , 2012
[2] 石泉斌,夏又生*,F(xiàn)ast multi-channel image reconstruction using a novel two-dimensional algorithm, Multimedia Tools and Applications , vol. 63, Feb, 2013 online Published。
[3] 夏又生, Z.P. Deng,X. Zheng, Analysis and application of a novel fast algorithm for 2-D ARMA model parameter estimation, Automatica, vol. 49, pp 3056-3064, 2013.
[4] 夏又生 and M. Kamel, Novel cooperative neural fusion algorithms for image restoration and image fusion, IEEE Transactions on Image Processing, vol. 16, pp. 367-381, 2007 .
[5] 夏又生, A fast algorithm for constrained GLAD estimation with application to image restoration, Proceeding of World Congress on Intelligent Control
and Automation, July, Jinan, China, pp.729-734,2010.
[6] 莊金蓮,夏又生, An Improved Regularization Approach for Blind Restoration of multichannel Imagery,International Congress on Image and Signal Processing,上海,2011年10月。
[7] 文虎兒, 夏又生, A SIFT operator -based Image Registration Using Cross-Correlation Coefficient, International Congress on Image and Signal Processing,上海,2011年10月。
4.智能優(yōu)化算法的研究工作
[1] 夏又生, 陳天平,J. Shan,A novel iteration method for computing generalized inverse,Neural Computation, vol.26, pp. 449-465 , 2014
[2] 夏又生, A Compact Cooperative Recurrent Neural Network for Computing General Constrained L-1 Norm Estimators,IEEE Transactions on Signal Processing, vol.57, pp. 3693-3697,2009。
[3] 夏又生, G. Feng, and J. Wang, ``A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints”, IEEE Transactions on Neural Networks, vol.19,1340-1353, 2008
[4] 夏又生and M. Kamel, ``Cooperative Recurrent Neural Networks for solving L1 estimation problems with general linear constraints," Neural Computation, vol. 20, pp.844-872, 2008.
[5] 夏又生, New cooperative recurrent neural networks for solving constrained variational inequality problems, Science in China: Information sciences, vol.52, 1766-177, 2009.
[6] Sun C., 夏又生, An analysis of a neural dynamical approach to solving optimization Problems,IEEE Transactions on Automatic Control,vol. 54, pp. 1972-1977,2009.
[7] 夏又生and G. Feng, ``A New Neural Network for Solving
Nonlinear Projection equations," Neural Networks, vol. 20, pp. 577-589, 2007.
[8] 夏又生, G. Feng, and M. S Kamel, Development and analysis of neural dynamical approaches to solving nonlinear programming problems, IEEE Transactions on Automatic Control, Vol 52, pp. 2154-2159, 2007.
[9] 夏又生, G. Feng, and J. Wang, ``A Primal-Dual Neural Network
for On-Line Resolving Constrained Kinematic Redundancy," IEEE Transactions on Systems, Man and Cybernetics - Part B, vol. 35, pp. 54-64, 2005.
[10] 夏又生, ``An extended projection neural network for constrained optimization", Neural Computation, vol. 16, no. 4, pp. 863-883, 2004.
[11] 夏又生, ``Further results on global convergence and stability of globally projected dynamical systems," Journal of Optimization Theory and Applications, vol. 122, pp.627-149, 2004.
[12] 夏又生 and F. Gang, ``On Convergence Rate of Projection Neural
Networks," IEEE Transactions on Automatic Control, vol.
49, pp. 91-96, 2004.
[13] 夏又生and J. Wang, ``A General Projection neural network for solving monotone variational inequality and related optimization problems", IEEE Transactions Neural Networks}, vol.15, pp. 318-328, 2004.
[14] 夏又生,J. Wang, and L. M. Fork, ``Grasping Force Optimization for Multifingered Robotic Hands Using a Recurrent Neural Network," IEEE Transactions on Robotics and Automation, vol. 20, pp. 549-554, 2004.
掃碼關(guān)注
考研信息一網(wǎng)打盡
網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號