2011年考研數(shù)學(xué)的七大知識點
查看(751) 回復(fù)(0) |
|
smallbs
|
發(fā)表于 2010-09-15 21:15
樓主
大綱已經(jīng)出版,眾考生已經(jīng)了解到2011年考研大綱變化很少,因此我們要加強基礎(chǔ)知識的復(fù)習(xí)。在此結(jié)合名師的解讀2011年大綱著重為眾考生講解未來考試中比較重要的七個點,希望引起各考生的注意。
1、兩個重要極限,未定式的極限、等價無窮小代換 這些小的知識點在歷年的考察中都比較高。而透過我們分析,假如考極限的話,主要考的是洛必達法則加等價無窮小代換,特別針對數(shù)三的同學(xué),這兒可能出大題。 2、處理連續(xù)性,可導(dǎo)性和可微性的關(guān)系 要求掌握各種函數(shù)的求導(dǎo)方法。比如隱函數(shù)求導(dǎo),參數(shù)方程求導(dǎo)等等這一類的,還有注意一元函數(shù)的應(yīng)用問題,這也是歷年考試的一個重點。數(shù)三的同學(xué)這兒結(jié)合經(jīng)濟類的一些試題進行考察。 3、微分方程:一是一元線性微分方程,第二是二階常系數(shù)齊次/非齊次線性微分方程 對第一部分,考生需要掌握九種小類型,針對每一種小類型有不同的解題方式,針對每個不同的方程,套用不同的公式就行了。對于二階常系數(shù)線性微分方程大家一定要理解解的結(jié)構(gòu)。另一塊對于非齊次的方程來說,考生要注意它和特征方程的聯(lián)系,有齊次為方程可以求它的通解,當(dāng)然給出的通解大家也要寫出它的特征方程,這個變化是咱們這幾年的一個趨勢。這一類問題就是逆問題。 對于二階常系數(shù)非齊次的線性方程大家要分類掌握。當(dāng)然,這一塊對于數(shù)三的同學(xué)來說,還有一個差分方程的問題,差分方程不作為咱們的一個重點,而且提醒大家一下,學(xué)習(xí)的時候要注意,差分方程的解題方式和微方程是相似的,學(xué)習(xí)的時候要注意這一點。 4、級數(shù)問題,主要針對數(shù)一和數(shù)三 這部分的重點是:一、常數(shù)項級數(shù)的性質(zhì),包括斂散性;二、牽扯到冪級數(shù),大家要熟練掌握冪級數(shù)的收斂區(qū)間的計算,收斂半徑與和函數(shù),冪級數(shù)展開的問題,要掌握一個熟練的方法來進行計算。對于冪級數(shù)求和函數(shù)它可能直接給咱們一個冪級數(shù)求它的和函數(shù)或者給出一個常數(shù)項級數(shù)讓咱們求它的和,要轉(zhuǎn)化成適當(dāng)?shù)膬缂墧?shù)來進行求和。 5、一維隨機變量函數(shù)的分布 這個要重點掌握連續(xù)性變量的這一塊。這里面有個難點,一維隨機變量函數(shù)這是一個難點,求一元隨機變量函數(shù)的分布有兩種方式,一個是分布函數(shù)法,這是最基本要掌握的。另外是公式法,公式法相對比較便捷,但是應(yīng)用范圍有一定的局限性。 6、隨機變量的數(shù)字特征 要記住一維隨機變量的數(shù)字特征都要記熟,數(shù)字特征很少單獨性考察,往往和前面的一維隨機變量函數(shù)和多維隨機變量函數(shù)和第六章的數(shù)理統(tǒng)計結(jié)合進行考察。特別針對數(shù)一的同學(xué)來說,考察矩估計和最大似然估計的時候會考察無偏性。 7、參數(shù)估計 這一點是咱們經(jīng)常出大題的地方,這一塊對咱們數(shù)一,數(shù)二,數(shù)三的考生來講,包含兩塊知識點,一個是矩估計,一個是最大似然估計,這兩個集中出大題。數(shù)一的同學(xué),咱們特別強調(diào)一點,考這個矩估計或者最大似然估計,極有可能結(jié)合無偏性或者有效性進行考察。 |
回復(fù)話題 |
||
上傳/修改頭像 |
|
|