名師指導(dǎo):考研數(shù)學(xué)線性代數(shù)的復(fù)習(xí)方法
查看(763) 回復(fù)(0) |
|
smallbs
|
發(fā)表于 2010-09-15 21:08
樓主
歷年來考研數(shù)學(xué)大多都涉及到幾個(gè)部分的內(nèi)容,對(duì)于線性代數(shù)這門課,同學(xué)們普遍感覺書容易看懂,但題目不會(huì)做,或者題目會(huì)做,但一算就錯(cuò),這主要是大家對(duì)線性代數(shù)的特點(diǎn)不太了解所以復(fù)習(xí)線性代數(shù)一定要有一個(gè)整體意識(shí)。行列式和矩陣是基礎(chǔ)知識(shí),還有向量、方程組、特征值等一直是考點(diǎn)。復(fù)習(xí)要注意以下幾點(diǎn)。
一、注重對(duì)基本概念的理解與把握,正確熟練運(yùn)用基本方法及基本運(yùn)算 線性代數(shù)的概念很多,重要的有: 代數(shù)余子式,伴隨矩陣,逆矩陣,初等變換與初等矩陣,正交變換與正交矩陣,秩(矩陣、向量組、二次型),等價(jià)(矩陣、向量組),線性組合與線性表出,線性相關(guān)與線性無關(guān),極大線性無關(guān)組,基礎(chǔ)解系與通解,解的結(jié)構(gòu)與解空間,特征值與特征向量,相似與相似對(duì)角化,二次型的標(biāo)準(zhǔn)形與規(guī)范形,正定,合同變換與合同矩陣。 線性代數(shù)中運(yùn)算法則多,應(yīng)整理清楚不要混淆,基本運(yùn)算與基本方法要過關(guān),重要的有: 行列式(數(shù)字型、字母型)的計(jì)算,求逆矩陣,求矩陣的秩,求方陣的冪,求向量組的秩與極大線性無關(guān)組,線性相關(guān)的判定或求參數(shù),求基礎(chǔ)解系,求非齊次線性方程組的通解,求特征值與特征向量(定義法,特征多項(xiàng)式基礎(chǔ)解系法),判斷與求相似對(duì)角矩陣,用正交變換化實(shí)對(duì)稱矩陣為對(duì)角矩陣(亦即用正交變換化二次型為標(biāo)準(zhǔn)形)。 二、注重知識(shí)點(diǎn)的銜接與轉(zhuǎn)換,知識(shí)要成網(wǎng),努力提高綜合分析能力 線性代數(shù)從內(nèi)容上看縱橫交錯(cuò),前后聯(lián)系緊密,環(huán)環(huán)相扣,相互滲透,因此解題方法靈活多變,復(fù)習(xí)時(shí)應(yīng)當(dāng)常問自己做得對(duì)不對(duì)?再問做得好不好?只有不斷地歸納總結(jié),努力搞清內(nèi)在聯(lián)系,使所學(xué)知識(shí)融會(huì)貫通,接口與切入點(diǎn)多了,熟悉了,思路自然就開闊了。 正是因?yàn)榫性代數(shù)各知識(shí)點(diǎn)之間有著千絲萬縷的聯(lián)系,代數(shù)題的綜合性與靈活性就較大,同學(xué)們整理時(shí)要注重串聯(lián)、銜接與轉(zhuǎn)換。 三、注重邏輯性與敘述表述 線性代數(shù)對(duì)于抽象性與邏輯性有較高的要求,通過證明題可以了解考生對(duì)數(shù)學(xué)主要原理、定理的理解與掌握程度,考查考生的抽象思維能力、邏輯推理能力。大家復(fù)習(xí)整理時(shí),應(yīng)當(dāng)搞清公式、定理成立的條件,不能張冠李戴,同時(shí)還應(yīng)注意語言的敘述表達(dá)應(yīng)準(zhǔn)確、簡(jiǎn)明。 總之,數(shù)學(xué)題目千變?nèi)f化,有各種延伸或變式,同學(xué)們要在考試中取得好成績(jī),一定要認(rèn)真仔細(xì)地復(fù)習(xí),華而不實(shí)靠押題碰運(yùn)氣是行不通的,必須要重視三基,多思多議,不斷地總結(jié)經(jīng)驗(yàn)與教訓(xùn),做到融會(huì)貫通。 |
回復(fù)話題 |
||
上傳/修改頭像 |
|
|